Potential role of Thermus thermophilus and T. oshimai in high rates of nitrous oxide (N2O) production in ∼80 °C hot springs in the US Great Basin.
نویسندگان
چکیده
Ambient nitrous oxide (N(2)O) emissions from Great Boiling Spring (GBS) in the US Great Basin depended on temperature, with the highest flux, 67.8 ± 2.6 μmol N(2)O-N m(-2) day(-1) , occurring in the large source pool at 82 °C. This rate of N(2)O production contrasted with negligible production from nearby soils and was similar to rates from soils and sediments impacted with agricultural fertilizers. To investigate the source of N(2)O, a variety of approaches were used to enrich and isolate heterotrophic micro-organisms, and isolates were screened for nitrate reduction ability. Nitrate-respiring isolates were identified by 16S rRNA gene sequencing as Thermus thermophilus (31 isolates) and T. oshimai (three isolates). All isolates reduced nitrate to N(2)O but not to dinitrogen and were unable to grow with N(2)O as a terminal electron acceptor. Representative T. thermophilus and T. oshimai strains contained genes with 96-98% and 93% DNA identity, respectively, to the nitrate reductase catalytic subunit gene (narG) of T. thermophilus HB8. These data implicate T. thermophilus and T. oshimai in high flux of N(2)O in GBS and raise questions about the genetic basis of the incomplete denitrification pathway in these organisms and on the fate of biogenic N(2)O in geothermal environments.
منابع مشابه
Whole Genome Sequencing of Thermus oshimai JL-2 and Thermus thermophilus JL-18, Incomplete Denitrifiers from the United States Great Basin
The strains Thermus oshimai JL-2 and Thermus thermophilus JL-18 each have a circular chromosome, 2.07 Mb and 1.9 Mb in size, respectively, and each has two plasmids ranging from 0.27 Mb to 57.2 kb. The megaplasmid of each strain contains a gene cluster for the reduction of nitrate to nitrous oxide, consistent with their incomplete denitrification phenotypes.
متن کاملCharacterization of the nitric oxide reductase from Thermus thermophilus.
Nitrous oxide (N2O) is a powerful greenhouse gas implicated in climate change. The dominant source of atmospheric N2O is incomplete biological dentrification, and the enzymes responsible for the release of N2O are NO reductases. It was recently reported that ambient emissions of N2O from the Great Boiling Spring in the United States Great Basin are high, and attributed to incomplete denitrifica...
متن کاملThermus oshimai JL-2 and T. thermophilus JL-18 genome analysis illuminates pathways for carbon, nitrogen, and sulfur cycling
The complete genomes of Thermus oshimai JL-2 and T. thermophilus JL-18 each consist of a circular chromosome, 2.07 Mb and 1.9 Mb, respectively, and two plasmids ranging from 0.27 Mb to 57.2 kb. Comparison of the T. thermophilus JL-18 chromosome with those from other strains of T. thermophilus revealed a high degree of synteny, whereas the megaplasmids from the same strains were highly plastic. ...
متن کاملAmmonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium in two US Great Basin hot springs with abundant ammonia-oxidizing archaea.
Many thermophiles catalyse free energy-yielding redox reactions involving nitrogenous compounds; however, little is known about these processes in natural thermal environments. Rates of ammonia oxidation, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were measured in source water and sediments of two ≈ 80°C springs in the US Great Basin. Ammonia oxidation and denitrific...
متن کاملمروری بر خواص و عملکرد پیشرانه N2O در سیستمهای پیشرانش مختلف(علمی-ترویجی)
The purpose of this paper is to review the application and the status of mono propellant Nitrous oxide (N2O) as a high energetic material in the space industry. Therefore Nitrous oxide is introduced and its usage in propulsion systems is discussed. The results suggest that this compound lies in the development of the miniaturization concept of space propulsion systems. Because of this combinati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Geobiology
دوره 9 6 شماره
صفحات -
تاریخ انتشار 2011